RankSQL:
Query Algebra and Optimization
for Relational Top-k Queries

Chengkai Li (UIUC)
joint work with
Kevin Chen-Chuan Chang (UIUC)

lhab F. llyas (U. of Waterloo)
Sumin Song (UIUC)

Ranking (Top-k) Queries

Ranking is an important functionality in many
real-world database applications:

E-Commerce, Web Sources

Find the best hotel deals by price, distance, etc.
Multimedia Databases

Find the most similar images by color, shape, texture, etc.
Text Retrieval, Search Engine

Find the most relevant records/documents/pages.
OLAP, Decision Support

Find the top profitable customers to send ads.

Example: Trip Planning

Suggest a hotel to stay and a museum to Visit:

hotel [museum

cheap [close |related [score

*
Select 1 lmo

0.9 0.7 |0.8 2.4

From o |m1

0.6 0.8 |0.9 2.3

Hotel h, Museum m h1 | m3

0.9 0.7 |0.6 2.2

Where

h.star=3 AND
h.area=m.area

Order By

cheap(h.price) +
close(h.addr, “BWI airport”) +
related(m.collection,"dinosaur”)

Limit 5

membership dimension:
Boolean predicates,
Boolean function

order dimension:
ranking predicates,
monotonic scoring function

3

Processing Ranking Queries In
Traditional RDBMS

5 results

T

Select *
From

Hotel h, Museum m sort Cheapﬁf'ose”e'ated
Where /

@ ‘(B /N@a:m.area
Order B N ’

y 0h.s|tar—3 Scan(m)
R scan(h)

Limit 5

Problems of Traditional Approach

Naive Materialize-then-Sort scheme

Overkill:
total order of all results:
only 5 top results are requested.

Very Inefficient:

— Scan large base tables;

— Join large intermediate results;

— Evaluate every ranking on every tuple;
— Full sorting.

T 5 results

X

B

Therefore the problem is:

Unlike Boolean constructs,
ranking Is second class.

— Ran
com

com

KINg IS processed as a Monolithic
oonent (R), always after the Boolean

ponent (B).

How did we make Boolean “first class”?

Select 4 O h.star=3 AND h.area=m.area
From S -
Hotel h, Museum m ey
Where T~
h.star=3 AND /’ “Hotel X Museum
h.area=m.area

(1) materialize-then-filter

. Splitting and Interleaving

First Class
Select*
From

Hotel h, Museum m
W here

h.star=3 AND

h.area=m.area

O h.star=3 AND h.area=m.area

A

Hotel X Museum

(1) materialize-then-filter

N h.area=m.area
) Gh.s|tar:3 Scan(m)
scan(h)

(2) Bis split into joins and selections
which interleave with each other.

8

Ranking Query Plan

5 results
T T 5 results

Mclose
SOrt cheap+close+related |

ran k-jOi Nh.area=m.area

D><lh.area=m.area Oh.star=3 Mrelated
h.star=
n ° scan(m) rank-scan(h,cheap) scan(m)
scan(h)

split and interleave:
materialize-then-sort: reduction of intermediate results,

naive, overkill thus processing cost .

Possibly orders of magnitude improvement

Implementation in PostgreSQL

planl.: traditional materialize-then-sort plan
plan2-4. new ranking query plans
—o— planl —8— plan2 —A— plan3 plan4

__ 100000 .

¢ 10000 -

© 1000 -

£

= 100 -

e

2 10 - N

>

3] 1

(3

014

10000 100000 1000000

s, Table Size

Observations:

an extended plan space with plans of various costs.
10

RankSQL

Goals:
— Support ranking as a first-class query type in RDBMS;
splitting ranking.
— Integrate ranking with traditional Boolean query constructs.
Interleaving ranking with other operations.

Foundation: Rank-Relational Algebra
— data model: rank-relation

— operators: new and augmented
— algebraic laws

Query engine:
— executor: physical operator implementation
— optimizer: plan enumeration, cost estimation

11

Two Logical Properties of Rank-Relation

 Membership of the tuples: evaluated Boolean predicates

* Order among the tuples: evaluated ranking predciates

I rank-relation
Membership(B). h.area=m.area, h.star=3

Order(R). close(h.addr, “BWI airport”)

i related(m.collection,“dinosaur”)
cheap(h.price)

rola Membership(®B). h.star=3
I rank-relation Order(®R). cheap(h.price)

12

Ranking Principle:
what should be the order?

F=cheap + close + related

I hotel | cheap | upper | museum | close | related
bound

hl 0.9 2.9 *

h2 0.6 2.6 *

Upper-bound determines the order:

« Without further processing hl, we cannot
I output any result;

13

Ranking Principle:
upper-bound determines the order

F=cheap + close + related

I hotel | cheap | upper | museum | close | related
bound

hl 0.9 2.9 *

h2 0.6 2.6 *

Upper-bound determines the order:

« Without further processing hl, we cannot
I output any result;

* Processing in the “promising” order,

avoiding unnecessary processing.
14

Rank-Relation

« Rank-relation RFf

R: relation
F: monotonic scoring function over predicates (p4, ..., P,)
Pc{p, ..., P, evaluated predicates

» Logical Properties:
— Membership:
R (as usual)
— Order: < . .
V11,12 € Ry t1 <t2iff Fp [t1] < Fp [t2].
(by upper-bound)

15

Operators

To achieve splitting and interleaving:
* New operator:
— M. evaluate ranking predicates piece by piece.
Implementation: MPro (Chang et al. SIGMODO02).

« Extended operators:
— rank-selection
— rank-join
Implementation: HRJN (llyas et al. VLDBO03).
— rank-scan
— rank-union, rank-intersection.

16

Example

hotel | ...| p1 | p2 p3 score
hl 0.7 0.8 0.9 2.4
h2 0.9 {0.85 [0.8 2.55
h3 05 1045 (0.75 | 1.7
h4 0.4 |0.7 0.95 | 2.05
Select *

From Hotel H
Order By pl+p2+p3

Limit 1

Rp1+p2+p3

hotel

upper-bound

hotel

upper-bound

hotel

upper-bound

17

Example

hotel | ...|p1l |[p2 |p3

score

hl

h2 0.9

h3

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel

upper-bound

hotel

upper-bound

hotel

upper-bound

h2

18

Example

hotel | ...|pl |[p2 |p3

score

hl

h2 0.9

h3

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel

upper-bound

hotel

upper-bound

hotel

upper-bound

h2

2.9

19

Example

hotel | ...|p1 | p2 p3 | score Rp1+p2+p3 hotel | upper-bound
hl

h2 0.9 @

h3 R hotel | upper-bound
hd PLP2 [T 2.9

Select * @@

R hotel | upper-bound

From Hotel H
Order By pl+p2+p3

Limit 1

20

Example

hotel| ... pl |p2 |p3

score

hl

h2 0.9 [0.85

h3

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel

upper-bound

hotel

upper-bound

h2

2.75

hotel

upper-bound

21

Example

hotel | ...|pl |[p2 |p3 |score
hl 0.7

h2 0.9 10.85

h3

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel

upper-bound

hotel

upper-bound

h2

2.75

hotel

upper-bound

hl

2.7

22

Example

hotel | ...|pl |p2 |p3 |score Rp1+p2+p3 hotel | upper-bound
hl 0.7 | 0.8
h2 0.9 10.85 @
h3 I R hotel | upper-bound
ha PLP2 Tho (275

hl 2.5

Select * @@

hotel | upper-bound
From Hotel H R

Order By pl+p2+p3
Limit 1

23

Example

hotel | ...|pl | p2 p3 | score Rp1+p2+p3 hotel | upper-bound
h1 0.7 | 0.8 h2 255
h2 09085 |08 |255 @
h3 R hotel | upper-bound
h4 pl+p2

hl 2.5

Select * @@

hotel | upper-bound
From Hotel H R

Order By pl+p2+p3
Limit 1

24

Example

hotel | ...| pl | p2 p3 | score Rp1+p2+p3 hotel | upper-bound
h1 0.7]0.8 h2 12.55
h2 09085 |08 |255 @
UE 0-5 R hotel | upper-bound
h4 pl+p2

hl 2.5

Select * @@

hotel | upper-bound
From Hotel H R

Order By pl+p2+p3
Limit 1

h3 2.5

25

Example

hotel | ...| p1 | p2 p3 | score Rp1+p2+p3 hotel | upper-bound
hl 0.7 | 0.8 h2 |2.55
h2 0.9 |0.85 |08 |2.55 @
h3 0.5 [0.45 = hotel | upper-bound
h4 pl+p2

h1l 25

h3 1.95

Select * @@

R hotel | upper-bound

From Hotel H

Order By pl+p2+p3
Limit 1

26

Example

hotel| ...|pl |p2 |p3 |score
hl 0.7 10.8 [0.9 2.4
h2 0.9 10.85 | 0.8 2.55
h3 0.5 10.45

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel

upper-bound

h2

2.55

hl

2.4

hotel

upper-bound

h3

1.95

hotel

upper-bound

27

Example

hotel | ...|pl |p2 |p3 |score
hl 0.7 10.8 [0.9 2.4
h2 0.9 10.85 | 0.8 2.55
h3 0.5 10.45

h4

Select *

From Hotel H
Order By pl+p2+p3
Limit 1

Rp1+p2+p3

hotel | upper-bound

hl 2.4

hotel | upper-bound

h3 1.95

hotel | upper-bound

28

In contrast: materialize-then-sort

hotel | ...|pl |p2 |p3 |score
hl 0.7 108 |0.9 2.4
h2 0.9 10.85 | 0.8 2.55
h3 0.51045 |0.75 | 1.7
h4 0.4 |0.7 0.95 | 2.05
Select *

From Hotel H
Order By pl+p2+p3

Limit 1

@pl+p2+p3

A

29

Impact of Rank-Relational Algebra

parser,

Ranking Query L \
. operators and
Logical Query Plan algebraic laws
optimizer S ;
cost model — enumerator
Physical Query Plan\ implementation
of operators
Results f executor /

30

Optimization

« Two-dimensional enumeration:
ranking (ranking predicate scheduling)
and
filtering (join order selection)

« Sampling-based cardinality estimation

31

Two-Dimensional Enumeration

(1 table, O predicate)
seqScan(H), idxScan(H), seqgScan(M), ...

(1 table, 1 predicate)
rankScangpeap(H), Heneap(S an(H)), ...

(1 table, 2 predicates)
Mclose(rankscancheap(H))’ o

(2 table, O predicate)
NestLoop(seqScan(H), seqScan(M)), ...

(2 table, 1 predicate)
NRJIN(rankScan qe.p(H), seqScan(M)),...

and soon...

32

Related Work

 Middleware

Fagin et al. (PODS 96,01),Nepal et al. (ICDE 99),Glnter et al.
(VLDB 00),Bruno et al. (ICDE 02),Chang et al. (SIGMOD 02)

« RDBMS, outside the core

Chaudhuri et al. (VLDB 99),Chang et al. (SIGMOD 00), Hristidis et
al. (SIGMOD 01), Tsaparas et al. (ICDE 03), Yietal. (ICDE 03)

« RDBMS, in the query engine
— Physical operators and physical properties

Carey et al. (SIGMOD 97), llyas et al. (VLDB 02, 03, SIGMOD 04),
Natsev et al. (VLDB 01)

— Algebra framework

Chaudhuri et al. (CIDR 05)
33

Conclusion: RankSQL System

Goal:
Support ranking as a first-class query type;
Integrate ranking with Boolean query constructs.

Our approach:

— Algebra: rank-relation,
new and augmented rank-aware operators,
algebraic laws

— Optimizer: two-dimensional enumeration,
sampling-based cost estimation

Implementation: in PostgreSQL

Welcome to our demo in VLDBO5!

34

